Role of arg-410 and tyr-411 in human serum albumin for ligand binding and esterase-like activity.
نویسندگان
چکیده
Recombinant wild-type human serum albumin (rHSA), the single-residue mutants R410A, Y411A, Y411S and Y411F and the double mutant R410A/Y411A were produced using a yeast expression system. The recombinant proteins were correctly folded, as they had the same stability towards guanidine hydrochloride and the same CD spectrum as HSA isolated from serum (native HSA). Thus the global structures of the recombinant proteins are probably very similar to that of native HSA. We investigated, by ultrafiltration and CD, the high-affinity binding of two representative site II ligands, namely ketoprofen and diazepam. According to the crystal structure of HSA, the residues Arg-410 and Tyr-411 protrude into the centre of site II (in subdomain 3A), and the binding results showed that the guanidino moiety of Arg-410, the phenolic oxygen and the aromatic ring of Tyr-411 are important for ketoprofen binding. The guanidino moiety probably interacts electrostatically with the carboxy group of ketoprofen, the phenolic oxygen could make a hydrogen-bond with the keto group of the ligand, and the aromatic ring may participate in a specific stacking interaction with one of or both of the aromatic rings of ketoprofen. By contrast, Arg-410 is not important for diazepam binding. The two parts of Tyr-411 interact favourably with diazepam, and probably do so in the same way as with ketoprofen. In addition to its unique ligand binding properties, HSA also possesses an esterase-like activity, and studies with p-nitrophenyl acetate as a substrate showed that, although Arg-410 is important, the enzymic activity of HSA is much more dependent on the presence of Tyr-411. A minor activity could be registered when serine, but not alanine or phenylalanine, was present at position 411.
منابع مشابه
Insight into the binding mechanism of imipenem to human serum albumin by spectroscopic and computational approaches.
The mechanism of interaction between imipenem and HSA was investigated by various techniques like fluorescence, UV.vis absorbance, FRET, circular dichroism, urea denaturation, enzyme kinetics, ITC, and molecular docking. We found that imipenem binds to HSA at a high affinity site located in subdomain IIIA (Sudlow's site I) and a low affinity site located in subdomain IIA.IIB. Electrostatic inte...
متن کاملInteraction of Human Serum Albumin with Ethyl 2-[2-(dimethylamino)-4-(4-nitrophenyl)-1,3-thiazole-5-yl]-2-oxoacetate as a Synthesized Ligand
The interaction of human serum albumin with Ethyl 2-[2-(dimethylamino)-4-(4-nitrophenyl)- 1,3-thiazole-5-yl]-2-oxoacetate was investigated by using isothermal titration UV-visible spectrophotometry in tris-buffer, pH 7.4. According to these results, it was found that there are a set of 4 binding sites for this ligand on HSA with positive cooperativity in the binding process. This thiazole deriv...
متن کاملFluoxetin Competes with Cortisol for Binding to Human Serum Albumin
Human serum albumin (HSA) is an important protein that carries variety of substances like some hormones and drugs in blood. Pharmacological studies of the interaction of many drugs and HSA are reported during several decades, specially recently years. Interaction of cortisol and fluoxetine hydrochloride (FLX) (as a common anti-stress drug) with HSA (as their carrier in blood) has been studied s...
متن کاملPseudo-esterase activity of human albumin: slow turnover on tyrosine 411 and stable acetylation of 82 residues including 59 lysines.
Human albumin is thought to hydrolyze esters because multiple equivalents of product are formed for each equivalent of albumin. Esterase activity with p-nitrophenyl acetate has been attributed to turnover at tyrosine 411. However, p-nitrophenyl acetate creates multiple, stable, acetylated adducts, a property contrary to turnover. Our goal was to identify residues that become acetylated by p-nit...
متن کاملIsothermal Titration Calorimetry and Molecular Dynamics Simulation Studies on the Binding of Indometacin with Human Serum Albumin
Human serum albumin (HSA) is the most abundant protein in the blood plasma. Drug binding to HSA is crucial to study the absorption, distribution, metabolism, efficiency and bioavailability of drug molecules. In this study, isothermal titration calorimetry and molecular dynamics simulation of HSA and its complex with indometacin (IM) were performed to investigate thermodynamics parameters and th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 349 Pt 3 شماره
صفحات -
تاریخ انتشار 2000